Stilt Structure for Remote Observatories in Antarctica

Drummond Biles, Marc Lessard, Paul Riley University of New Hampshire Author Contact: dep42@unh.edu

Introduction

Recently the Magnetosphere-Ionosphere Research Laboratory (MIRL) has been working on sending a remote observatory to Western Antarctic Ice Shelf (WAIS) Divide, Antarctica. As a part of this there was a need to develop a Stilt structure that could support the observatory and deal with the extreme

Matesial: Aluminum

6061 Alloy (minimum yield strength of all 6061 Alloys)

Factor of Safety = 2 Box Weight=

Calculations of Stress: Maximum wind speed= 92 mph Drag Force = $\frac{1}{2}\rho_{air}C_dA_pV^2$

 P_{air} @ -40°F=1.506 kg/m^3

 $C_d = 2$

V= 41.2 m/sec

=5925.13 N 5925.13/2= **2962.565** N

= 1.23 cm

Clevis

Calculations of Stress: Total weight= 2295.56lbs =1041.2485 kg 1041.25*9.8= 10204.25 N 10204.25/4= **2557.06 N**

Total deformation: = .00136 cm

I-Beam

Calculations of Stress: Box weight= 2000lbs = 907.184 kg907.184*9.8= 8890.40 8890.40/3=

2963.4677 N

Total deformation: = .1357 cm

Stilt Leg

 $A_n = 2.323 \text{ m}^2$

 $=\frac{1}{2}(1.506)(2)(2.323)(41.2)$

Total deformation

Stilt Design

- Extreme conditions
- Ease of assembly and transportat on
- Long term use
- Cost of materials and production

T-Bar

Calculations of Stress: Box + 3 I-Beams 2000 +20.98*3= 2062.96 lb 2062.96/2 = 1031.479 lb= 467.87 kg467.87*9.8= 4585.136 N 4585.136/3= **1528.379** N Total deformation: = .149 cm

. 31,217.4

Shear Stress:

T= shear stress F= Force due to box + pa etteStress:

FS= Factor of Safety A= Cross sectional area of pin $\sigma_B = P/dt$

R= Radius of Pin

ultimate = 12000 psi $\Gamma_{\rm design} = 12000/2 = 6000 \text{ psi}$ $6000 = F/(\pi R^2)$ $R^2 = 573.89/6000\pi$

12000/182.67= 65

R= .1745

Minimum Diameter = .3489 inches Diameter= 1 inch $T_{\text{design}} = 182.67 \text{ psi}$

Bearing

P=Load on Pin

d= diameter of | Culations: | ox + Palette=2295.56lbs | F=2295.56/4= **573.89lbs** per | leg t= thickness of | (573.89)/(1*.65)

= 882.907 psi Bearing Yield Strength= 14900psi

14900/882.907= 16.87 FS=**16.87**

<u>Total</u>

Summary

This design is being used in a proposal for an observatory to be put in WAIS divide. These stilts were a crucial part of the proposal due to the appeal of the minimal

<u>deformation:</u>