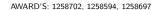


Investigating Non-Equilibrium Thermal Boundary Layers

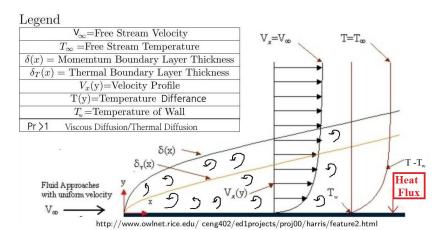
Drummond Biles Advisor: Chris White University of New Hampshire

> Graduate Seminar 14 November 2014


Special Thanks to:

Michael Allard, Allen Ma, and Rza Ebadi

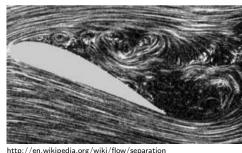
THIS WORK IS SUPPORTED BY AN NSF/DOE



<u>Overview</u>

- 1.Introduction to Boundary Layers
 - 2.Background/Motivation
 - 3.Experimental Setup
 - 4. Experimental Validation
 - 5. Future Work

Thermal Boundary Layers


Non-Equilibrium Thermal Boundary Layers

Robust heat flux correlations do not exist

Brought about by:

- Pressure gradients
- Separation
- Dynamic walls
- Unsteady flow

In many engineering applications one or several of these effects are important

Engineering Systems With Non-Equilibrium Flows

Gas Turbine

http://science.howstuffworks.com/

Internal Combustion Engine

http://www.zorly.com

Re-entry Vehicle

http://en.wikipedia.org

- ▶ Non-equilibrium flows exist in many environments
- Great need to further understand these complex flows for prediction and control

Piston Engine as a Case Study to Demonstrate Research Needs

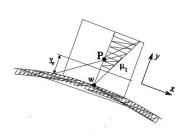
Standards for fuel mileage increasing to 40+mpg ³

Cylinder Discretized with 1 Million Cells

Heat=Work+Heat Loss

3. Corporate Average Fuel Economy

Need to accurately model heat transfer in internal combustion engines


- Increase efficiency
- Reduce emissions
- Advance low temperature combustion modes

Heat loss numerically simulated in modern engines

- Simulation Integral component of engine design process
- Simulations can not accurately resolve boundary layer dynamics

CFD Wall models (Equilibrium Flows)

- Computationally expensive to solve near wall dynamics
- Near wall dynamics extrapolated from log profile
- Reasonable estimate for equilibrium wall flows
- Fail when applied non-equilibrium boundary layers

Zero Pressure Gradient vs Adverse Pressure Gradient

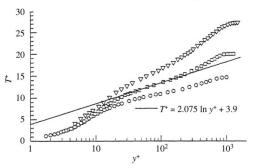


Figure 1. Temperature profiles in favourable (Thielbahr *et al.* 1969; ∇) and adverse (Blackwell *et al.* 1972; \circ) pressure gradient. $T^+ \equiv (T_{\rm w} - T)/T_{\tau}$. From Kays & Crawford (1993).

-Need models which can predict heat transfer in non-equilibrium flows

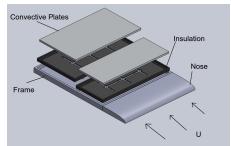
Experimental Approach to Investigating

Non-Equilibrium Thermal Boundary Layers Systematic and Simple

Facility

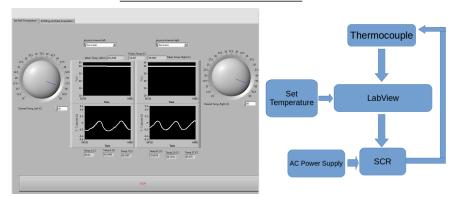
- ► Length=2.75m
- Turbulent Management section (screens/honeycomb)
- Velocity .25 to 12m/sec (frequency controlled motor)

Design Constraints


- Control Boundary Conditions
 - -Control T_{∞}
 - -Control T_o /heat flux
- Maintain attached boundary Layer

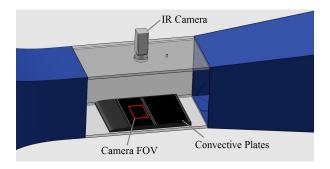
Sectioned Constant Wall Temperature Plate

- ► Size=18"x25.5"
- Sectioned design²
- Independently heated/controlled²
- Individually Insulated
- Thermocouple monitored temperature



2 Blackwell, B. F., The turbulent boundary layer on a porous plate

Temperature Controller



- ▶ Maintain temperature within $+-.1^o$ C
- Independently monitor and control each plate

Designed/Created by:Ebadi, Reza

Spatial Temperature Distribution

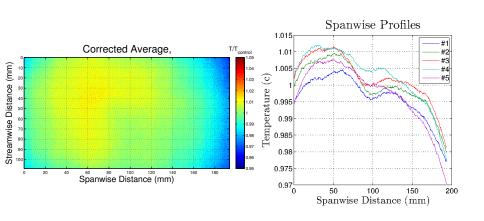
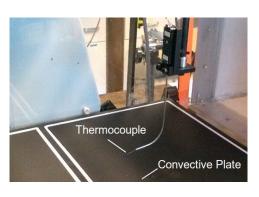
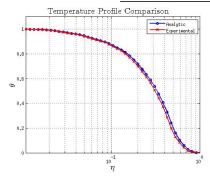


Image Correction Scheme

- Acquire Flat Field Image
- Average and find correction matrix
- Acquire images



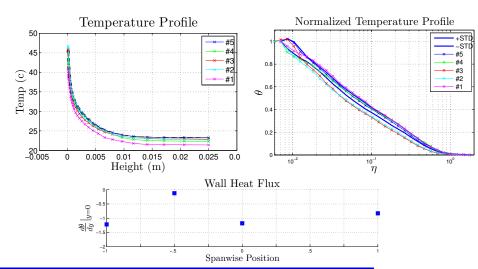
Spatial Temperature Distribution Results


Temperature Profile

- ► Type K thermocouple
- Probe diameter = .254 mm
- Downstream position=.3 m
- ▶ Wall temperature= 60°C
- ▶ 30 points logarithmicly spaced
- ▶ Sampled at 2 Hz for 2 min

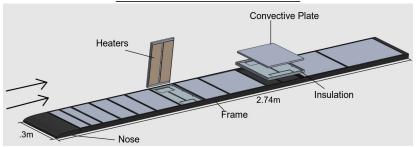
Temperature Profile Results

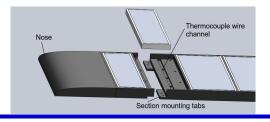
Non-dimensional variables¹:


$$\bullet \ \theta = \frac{T - T_{\infty}}{T_{wall} - T_{\infty}}$$

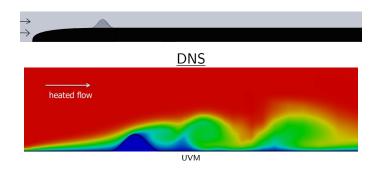
$$\theta_A = 1 - 1.5\eta + .5\eta^3$$

1. Faghri, Amir, Advanced Heat and Mass Transfer




Spanwise Variability

Final Wall Plate Design



Future Work Student Wind Tunnel (next week)

 Examine spatial wall plate temperature distribution due to flow around an obstacle

Future Work BL Wind Tunnel

- ▶ Validate plate design
- Systematically investigate non-equilibrium boundary layers

References

- ► Lumley, John L. Engines An Introduction. Cambridge University Press, 1999. Print.
- ► Fox and McDonald Intro to Fluid Mechanics. John Wiley & Sons, 2011.

 Print.
- ▶ Jiji, Latif M. Heat Convection. Springer, 2006. Print.
- ▶ Blackwell, B. F. The turbulnet boundary layer on a porous plate. Stanford, 1972. Print.
- Faghri, Amir, Advanced Heat and Mass Transfer

$\underline{\mathsf{Questions??}}$